Giới thiệu
FLP Impossibillity là một trong những paper quan trọng nhất về hệ thống phân tán, trong đó nó chỉ ra một số giới hạn mà chúng ta không thể vượt qua được. Ở đây, ba tác giả (Fischer, Lynch, Paterson) đã chỉ ra rằng trong những hệ thống phân tán không đồng bộ mà nó có thể chứa các process lỗi thì không tồn tại một thuật toán đồng thuận nào mà nó có thể đảm bảo sự kết thúc của việc thực thi.
Bài viết này sẽ trình bày lại chứng minh được đưa ra trong paper trên. Bài viết này sẽ được chia thành năm phần:
- Định nghĩa về Consensus, Asynchronous Model
- Phát biểu bài toán (System Model)
- Biểu diễn bài toán bằng toán học (Formal Model)
- Nêu lên mệnh đề được đưa ra trong paper
- Trình bày chứng minh
Định nghĩa
Chúng ta sẽ bắt đầu bằng một số định nghĩa cần biết về Consensus cũng như Asynchronous Model.
Consensus
Các thuật toán Consensus được dùng để giải quyết bài toán đồng thuận trên hệ thống phân tán. Bài toán đồng thuận thường được mô tả như sau: Các process trong hệ thống muốn thống nhất một giá trị chung. Một hoặc nhiều process có thể đề xuất các giá trị ban đầu.
Một thuật toán Consensus được coi là hợp lệ nếu thoả mãn ba điều kiện sau đây:
- Termination: Tất cả các process bình thường đều sẽ đưa ra quyết định trên một giá trị.
- Agreement: Tất cả những process đưa ra quyết định thi đều quyết định trên cùng một giá trị.
- Validity: Giá trị được đồng thuận phải được đề xuất từ một trong các process ở trong hệ thống.
Chúng ta mặc định rằng: Thuật toán Consensus chỉ chính xác khi số lượng process bị lỗi sẽ ít hơn một hằng số được định trước.
Asynchronous Model
Asynchronous là một trong ba giả định về sự đồng bộ (Synchrony) trong hệ thống phân tán (hai giả định còn lại là Synchronous và Partially Synchronous). Với Asynchronous Model, chúng ta sẽ có những tính chất sau:
- Message có thể bị deliver trễ với thời gian không xác định
- Không xác định được tốc độ xử lý của các process
- Không có sử dụng synchronized clocks
- Không thể sử dụng các thuật toán dựa vào time out
- Không thể xác định được một process bị lỗi hay nó đang xử lý rất chậm
Giả định về Asynchronous Model là một giả định quan trọng khi phát biểu về bài toán.
System Model
Khi thiết kế một thuật toán về Distributed System thì System Model là tập hợp các điều kiện cần để thuật toán đó có thể hoạt động một cách chính xác.
Paper này sẽ chứng minh rằng không tồn tại thuật toán Consensus với những điều kiện sau:
- Asynchronos Model
- Messages System là đáng tin cậy
- Tất cả các message đều được deliver đến các non-faulty process một và chỉ một lần (nhưng có thể nhận trễ một cách bất kỳ).
- Chỉ cân nhắc lỗi crash-stop failure - bị lỗi và dừng hẳn
- Ở đây chúng ta chỉ xem xét về lỗi crash-stop failure - trường hợp lỗi đơn giản nhất. Do đó với những mô hình lỗi phức tạp hơn thì chúng ta sẽ có cùng kết quả.
- Tối đa một process bị lỗi
- Consensus:
- Đồng thuận trên tập giá trị 0, 1
- Chỉ cần một số non-faulty process đồng thuận trên cùng 1 giá trị (Partially Correct)
Có thể thấy những điều kiện trên sẽ yếu hơn so với các điều kiện thông thường trên các hệ thống phân tán (trừ Asynchronous Model). Do đó, nếu chúng ta chứng minh được rằng không tồn tại thuật toán Concensus trong trường hợp này thì thuật toán Consensus cũng không thể tồn tại với các trường hợp tổng quát hơn (với Asynchronous Model).
Formal Model
Trong phần này, chúng ta sẽ biểu diễn hệ thống được định nghĩa ở trên dưới dạng toán học và nêu ra kết luận về tính bất khả của bài toán.
Consensus Protocol
Gọi Consensus Protocol P là một hệ thống phân tán bất đồng bộ (Asynchronous Model) bao gồm N process (N > = 2). Các process có thể trao đổi thông tin bằng cách gửi message cho nhau thông qua một Message System. Các thành phần đó sẽ được định nghĩa như bên dưới.
Process
Mỗi một process sẽ có những thành phần như sau:
- Một Input Register xp sẽ có giá trị thuộc tập {0, 1}
.
- Một Output Register yp sẽ có giá trị thuộc tập {b, 0, 1}
.
- Khi yp có giá trị là b có nghĩa là process chưa đưa ra quyết định.
- Giá trị khởi tạo của yp luôn là b.
- Giá trị của yp chỉ có thể thay đổi một lần duy nhất, hay mỗi một process chỉ có thể đưa ra quyết định một và chỉ một lần.
- Một bộ nhớ trong vô hạn.
- Một Transistion Function(TF).
- TF là một deterministic function (cùng input sẽ có cùng output).
Tất cả những thành phần kể trên sẽ được gọi là Internal State của một process. Chúng ta sẽ ký hiệu pI là Internal State của một process p. Initial State là State ban đầu của một process với tất cả giá trị của các thành phần kể trên (không tính Input Register) đều là các hằng số được cho sẵn. State khi mà giá trị của yp được gán bằng 0
hoặc 1
sẽ được gọi là Decision State.
Message System
Các process có thể trao đổi thông tin qua một Message System bao gồm những thành phần sau:
Message
Một message là một cặp (p, m)
, trong đó:
- p
là địa chỉ đến process p
- m
là nội dung của message
Gọi tập M
là tập hợp của tất cả các message.
Message Buffer
Tất cả các message (đã gửi nhưng chưa được nhận) sẽ được lưu trữ trong một cơ sở dữ liệu tên là Multiset
được gọi là Message Buffer(MB)
.
Multiset
sẽ khác với Set
thông thường ở một điểm đó là nó có thể lưu nhiều phần tử có giá trị giống nhau.
Sau đây là Pseudocode ví dụ về cách mà Multiset
hoạt động:
val ms = Multiset<Int>() // {} -- bắt đầu với tập rỗng
ms.add(1) // {(1, 1)} -- phần tử 1 có mặt một lần
ms.add(1) // {(1, 2)} -- phần tử 1 có mặt hai lần
ms.remove(1) // {(1, 1)} -- phần tử 1 có mặt một lần
ms.remove(1) // {} -- trở về với tập rỗng
Message Buffer
có hỗ trợ hai hàm sau:
send(p, m)
: thêm(p, m)
vàoMB
- luôn luôn thành công.receive(p)
: Dùng cho các process nhận message từMB
. Có hai trường hợp có thể xảy ra khi một process gọi hàm này:- Trong trường hợp tồn tại một cặp
(p, m)
trongMB
thì hàm này hoặc trả về một cặp(p, m)
sau đó xoá(p, m)
khỏiMB
hoặc trả về ϕ - giá trị null - một cách ngẫu nhiên. - Nếu p không có message nào trong
MB
thì trả về ϕ.
- Trong trường hợp tồn tại một cặp
Hàm receive
thoả mãn những điều kiện sau đây:
- Nó có thể trả về ϕ không xác định nhưng hữu hạn lần.
- Nếu một process p thực hiện receive(p)
vô hạn lần thì nó sẽ (eventually) nhận được toàn bộ message được gửi cho nó.
Ta có thể thấy MB
này mô phỏng tính chất của Asynchronous Model
(tính non-deterministic). Các message có thể bị chậm với một thời gian không xác định trước, nhưng nó sẽ dần dần được deliver chính xác một lần duy nhất (với điều kiện là các process gọi hàm receive
vô hạn lần).
Configuration
Một Configuration (C) của hệ thống bao gồm: - Internal State của tất cả process - Toàn bộ message trong Message Buffer
Initial Configuration (IC) bao gồm: - Initial State của tất cả process - Message Buffer là tập rỗng
Step
Step
là sự thay đổi của configuration
trong hệ thống với việc một process p thực hiện những bước như sau:
- p thực thi hàm
receive
:- (m,MB′) = MB.receive(p) Với
- m ∈ M ∪ ϕ
- MB′ = MB \ m
- Gọi
e = (p, m)
thì e sẽ được gọi là một Event - Sử dụng Transistion Function để apply event e vào p:
- (pI′,MS) = e(p) = TF(e,pI)
- pI′ là state mới của p sau khi apply
e(p)
MS
là một tập message mới mà p muốn gửi tớiMB
khi applye(p)
- Gửi message đến
Message Buffer
: MB″ = MB′ ∪ MS - configuration mới: C′ = C(pI′,MB″)
Vì TF là một deterministic function nên với mỗi configuration, kết quả của mỗi Step sẽ phụ thuộc hoàn toàn vào Event e=(p,m)
.
Hay step là sự apply một event e vào một configuration C: C' = e(C)
Faulty/Non-faulty Process
Một process p được coi là hoạt động bình thường (non-faulty) khi nó thực thi step vô hạn lần (tương đương với việc gọi receive(p)
vô hạn lần). Nếu ngược lại thì process đó sẽ được coi là lỗi (faulty).
Schedule
Một Schedule σ từ C là một chuỗi hữu hạn hoặc vô hạn event , mà chúng ta có thể apply lần lượt từng event vào C. Chuỗi các event đó được gọi là Run. Chúng ta có thể biểu diễn chúng như sau:
- σ = e1, e2, ⋯, en, n ∈ {1, ∞}
- σ(C) = en(⋯, e2(e1(C)) - apply schedule σ vào C.
Một configuration C1 được gọi là Reachable từ C nếu tồn tại một chuỗi hữu hạn σ thoả mãn: C1 = σ(C).
Một configuration có thể reachable từ một Initial Configuration thì được gọi là Accessible.
Từ nay về sau, các configuration được nhắc đến đều được hiểu ngầm là một accessible configuration.
Một số khái niệm khác
Một configuration C có Decision Value khi tồn tại ít nhất một process p ở Decision State hay yp = v; v ∈ 0, 1.
Run được gọi là Admissible (hợp lệ) nếu nó có tối đa một process lỗi và toàn bộ mesage được gửi tới các non-faulty process đều được nhận.
Run được gọi là Deciding khi tồn tại ít nhất một process đạt Decision State.
Tính chính xác của Consensus Protocol
Consensus Protocol P được coi là partial correct - đúng một phần - nếu: - Không tồn tại accessible configuration nào có nhiều hơn một Decision Value (tính Agreement). - ∀v ∈ 0, 1, ∃ accessible configuration C mà Decision Value của C sẽ bằng v.
Consensus Protocol P được coi là đúng - totally correct nếu nó partial correct và mọi admissible run đều là deciding run.
Mệnh đề
Không tồn tại Consensus Protocol mà totally correct trong điều kiện có ít nhất một faulty process.
Chứng minh
Chúng ta sẽ chứng minh mệnh đề này bằng phương pháp phản chứng. Giả sử tồn tại một Consensus Protocol P thoả mãn đề bài, từ đó chỉ ra tồn tại những hoạt cảnh mà P sẽ không thể đưa ra quyết định cuối cùng do đó dẫn đến sự mâu thuẫn. Chúng ta sẽ thực hiện điều đó qua hai bước:
- Chứng minh tồn tại những initial configuration mà quyết định cuối cùng chưa thể xác định.
- Xây dựng một admissible run mà trong toàn bộ quá trình apply nó, P không thể đưa ra quyết đinh.
Nhưng trước khi đi vào chứng minh, chúng ta sẽ nêu lên ba bổ đề mà chúng ta sẽ sử dụng trong chứng minh.
Bổ đề 1 - Tính giao hoán của Schedule
Cho một Configuration C, 2 Schedule σ1, σ2; gọi C1 = σ1(C), C2 = σ2(C). Nếu tập hợp các process trong σ1 và σ2 không giao nhau, thì chúng ta có thể apply σ1 cho C2, apply σ2 cho C1 và cả 2 đều cho ra cùng một Configuration C3 hay C3 = σ2(σ1(C)) = σ1(σ2(C))
Chứng minh
Đầu tiên ta thấy nếu một event e ∉ σ1 có thể apply vào C thì nó có thể apply vào C1 (vì mỗi message có thể bị trễ một cách bất kỳ). Do đó, chúng ta có thể apply σ2 vào C1. Tương tự cho việc apply σ1 vào C2. (1)
Gọi p(σ) là tập các process liên quan đến một Schedule σ. Theo đề bài, ta có p(σ1) ∪ p(σ2) = ∅.
Do σ1 và σ2 chỉ thay đổi State của 2 tập process độc lập với nhau trong C nên việc thay đổi thứ tự apply giữa σ1 và σ2 sẽ không thay đổi Internal State cuối cùng của toàn bộ process. (2)
Ngoài ra Message Buffer có tính giao hoán (tính chất của Multiset). Nên việc thay đổi thứ tự gửi các message (từ việc apply σ1 và σ2) sẽ không thay đổi kết quả cuối cùng của Message Buffer. (3)
Từ (1), (2), (3) ta có đpcm.
Bổ đề 2
Khái niệm
Cho một Configuration C, gọi V là tập hợp của các Decision Value của tất cả các reachable Configuraton từ C. C được gọi là bivalent nếu |V| = 2. C được gọi là univalent nếu |V| = 1, hay còn được gọi là 0-valent hoặc 1-valent tuỳ thuộc vào giá trị của Decision Value là 0 hay 1.
Hay nói cách khác, C được gọi là bivalent khi quyết định cuối cùng của C là chưa xác định. C được gọi là 0-valent nếu 0 sẽ luôn là giá trị được đồng thuận với mọi admissible run từ C. Tương tự cho 1-valent.
Bởi vì P là totally correct nên |V|! = 0.
Nội dung
P luôn luôn có một Initial Configuration là bivalent
Chứng minh
Giả sử P không có một Initial Configuration nào là bivalent, hay với mọi initial configuration của P thì nó sẽ là 0-valent hoặc 1-valent.
Ta gọi hai initial configuration C1, C2 là kề nhau(adjcent) nếu tất cả giá trị xp của chúng chỉ khác nhau ở một process p.
Ta thấy, với mọi C0, Cn bất kỳ, tồn tại chuỗi: [C0,C1,⋯,Cn] thoả mãn: Ci và Ci + 1 là 2 process kề nhau (mỗi Ci đều là initial configuration) (*).
Do định nghĩa về partial correct, P phải có 0-valent và 1-valent. Chọn C0 và Cn sao cho C0 là 0-valent và Cn là 1-valent. Từ () ta thấy, tồn tại hai process kề nhau Ci, Ci + 1 mà Ci là 0-valent* và Ci + 1 là 1-valent. Không mất tính tổng quát, ta giả sử C0, C1 là hai configuration đó.
Giả sử p
là process duy nhất mà C0, C1 khác nhau. Bây giờ chọn một amissible run σ bất kỳ bắt nguồn từ C0 mà p
sẽ không tham gia vào. Khi đó, chúng ta cũng có thể apply σ cho C1.
Ta thấy, σ(C0) = σ(C1) vì toàn bộ Intial State của C0, C1 là giống nhau (trừ p
) và p
sẽ không được sử dụng với σ.
Chú ý: P
là totally correct nên mọi admissible run đều là deciding run. Vì vậy, Decision Value của σ(C0) và σ(C1) phải giống nhau trái ngược với giả thiết đưa ra là C0 là 0-valent và C1 là 1-valent ta có đpcm.
Bổ đề 3
Cho C
là một bivalent Configuration của P
, e=(p,m)
là một event bất kỳ mà nó có thể apply cho C
. Gọi T
là tập hợp các Configuratioin có thể reachable từ C mà không apply e
, và D = e(T) = {e(E)|E ∈ T và e có thể apply cho E}. Chứng minh rằng D có chứa một bivalent Configuration.
Hay nói một cách đơn giản hơn tồn tại một reachable Configuration C'
từ C
thoả mãn 2 điều kiện: C'
là bivalent và e
là event cuối cùng được apply trước khi có C'
.
Chứng minh
Đầu tiên ta thấy message có thể bị trễ với thời gian bất định (nhưng hữu hạn) nên nếu e
có thể apply cho C
, thì e cũng có thể apply cho C'
∀C′ ∈ T.
Giả sử D chỉ có univalent Configuration.
Ký hiệu Ei là một i-valent reachable Configuration từ C, i ∈ 0, 1. Do C là bivalent nên sẽ tồn tại Ei với i ∈ 0, 1.
Với mỗi Ei, có 2 trường hợp có thể xảy ra:
- Ei ∈ T, ta có Fi = e(Ei) ∈ D
- Ei ∉ T, ta có e đã được apply trước khi đạt được Ei. Do đó, ∃Fi ∈ D mà Ei có thể reachable
từ Fi.
Chính vì vậy, trong bất cứ trường hợp nào ta luôn có một cặp Fi và Ei thoả mãn:
- Fi là không phải là bivalen vì Fi ∈ D.
- Một trong Fi và Ei có thể reachable
từ cái còn lại.
Từ đó, ta thấy D sẽ chứa cả 0-valent
và 1-valent
.
Gọi hai Configuration C1 và C2 là hàng xóm (neighbors) của nhau nếu một trong hai là kết của của cái còn lại bằng một Step duy nhất. Hay ∃e|e(C1) = C2 ∨ e(C2) = C1.
Dễ thấy tồn tại hai hàng xóm C0 và C1 thuộc T
thoả mãn: Di = e(Ci) là i-valent, i ∈ 0, 1.
Không mất tính tổng quát, có thể giả sử C1 = e′(C0) với e'=(p', m')
.
Ở đây cũng có hai trường hợp có thể xảy ra, p = p'
và p != p'
.
Trường hợp 1: Nếu p != p'
Theo mệnh đề 1 ta có: D1 = e(C1) = e(e′(C0)) = e′(e(C0)) = e′(D0)
Mà ta cũng có D1 là 1-valent, D0 là 0-valent => vô lý
Trường hợp 2: Nếu p = p'
Xem xét một Deciding Run bất kỳ từ C0, trong đó p
không tham gia bất cứ Step nào.
Gọi σ là Schedule tương ứng với Deciding Run đó.
Gọi A = σ(C0).
Theo bổ đề 1, σ cũng có thể apply cho Di: Ei = σ(Di).
Do Di là i-valent
nên Ei cũng là i-valent
.
Cũng theo bổ đề 1 ta có:
e(A) = e(σ(C0)) = σ(e(C0)) = σ(D0) =
0-valent
(1)e(e′(A)) = e(e′(σ(C0))) = σ(e(e′(C0))) = σ(e(C1)) = σ(D1) =
1-valent
(2)
Từ (1) và (2), ta thấy điều này là vô lý vì trái với giả thiết A là một Deciding Run
.
Do vậy, bất kể trường hợp nào ta cũng suy ra vô lý ta có đpcm.
Chứng minh mệnh đề
Ta nhận thấy rằng với mọi deciding run từ một bivalent Configuration, sẽ phải tồn tại một Step mà ở đó Configuration sẽ được chuyển từ bivalent thành univalent. Và Step đó sẽ xác định giá trị cuối cùng mà các process đồng thuận với nhau. Điều ta cần chỉ ra ở đây là luôn tồn tại một chuỗi vô hạn các event mà chúng có thể tránh được sự chuyển giao này, từ đó tồn tại một admissible run nhưng không phải là deciding run.
Cái admissible non-deciding run sẽ được xây dựng bằng nhiều giai đoạn - stage. Bắt đầu với việc duy trì một cái queue cho mọi process bắt đầu với thứ tự ngẫu nhiên. Sắp xếp các message ở trong Message Buffer theo thứ tự thời gian gửi (message được gửi sớm hơn sẽ ở đầu).
Mỗi stage sẽ được chọn như sau:
- Bắt đầu với một bivalent configuration C0 (tồn tại theo bổ đề 2)
- Chọn
e = (p,m)
là mesage được gửi sớm nhất trong Message Buffer (e có thể là ϕ). - Theo bổ đề 2, thì tồn tại một bivalent C1 có thể reachable từ C0 mà
e
là event được apply cuối cùng. - Tương tự ta có thể lặp lại các bước kể trên, để tạo thành một
admissible run
mà không bao giờ dừng.
Ta có đpcm.